Functions
Похiдна розкриває новий зв’язок мiж вiдстанню , швидкiстю та прискоренням . Шляхом диференцiювання можна знайти вираз для знаходження швидкостi та прискорення за вiдстанню . Зв’язок мiж ними можна описати так:
Правило
Вiдстань, швидкiсть та прискорення
Якщо дано положення (вiдстань) , то отримуємо
Приклад 1
Лiтак летить iз Лондона до Нью-Йорка. Положення лiтака над Атлантикою визначається як
де — кiлькiсть годин пiсля вiдправлення, а одиницею вимiрювання є кiлометри.
- 1.
- Яку вiдстань пролетiв лiтак через чотири години?
- 2.
- Яка швидкiсть лiтака через чотири години?
- 3.
- Знайди прискорення лiтака через чотири години.
- 1.
- Пiдставляємо в :
- 2.
- Щоб знайти швидкiсть лiтака через чотири години, потрiбно знайти швидкiсть лiтака. Щоб знайти її, продиференцiюємо :
Через чотири години швидкiсть лiтака становить км/год.
- 3.
- Щоб з’ясувати прискорення через чотири години, потрiбно продиференцiювати функцiю швидкостi . Отримуємо
Через чотири години прискорення лiтака становить км/год2. Це свiдчить про те, що лiтак прискорився через чотири години польоту.