# Activities 4

## 4.1)

Which of these functions are proportional? $\begin{array}{llll}\hfill y& =x+90\phantom{\rule{2em}{0ex}}& \hfill & \phantom{\rule{2em}{0ex}}\\ \hfill f\left(x\right)& =0.01x\phantom{\rule{2em}{0ex}}& \hfill & \phantom{\rule{2em}{0ex}}\\ \hfill g\left(x\right)& ={x}^{2}\phantom{\rule{2em}{0ex}}& \hfill & \phantom{\rule{2em}{0ex}}\\ \hfill h\left(x\right)& =10\phantom{\rule{0.17em}{0ex}}000x\phantom{\rule{2em}{0ex}}& \hfill & \phantom{\rule{2em}{0ex}}\end{array}$

## 4.2)

Which of these function tables describe proportional functions?

a)

 $x$-values $0$ $1$ $2$ $3$ $4$ $5$ $6$ $y$-values $5$ $6$ $7$ $8$ $9$ $10$ $11$

b)

 $x$-values $0$ $1$ $2$ $3$ $4$ $5$ $6$ $y$-values $0$ $4$ $8$ $12$ $16$ $20$ $24$

c)

 $x$-values $0$ $1$ $2$ $3$ $4$ $5$ $6$ $y$-values $3$ $6$ $9$ $12$ $15$ $18$ $21$

d)

 $x$-values $0$ $1$ $2$ $3$ $4$ $5$ $6$ $y$-values $-4$ $6$ $16$ $26$ $36$ $46$ $56$

## 4.3)

Which of these graphs show a proportional function?

You can find the solutions here.