Colorful House of Math logo
Menu

What Are the Trigonometric Identities?

The following identities are used extensively in trigonometry. You can use them when you solve trigonometric problems.

Formula

Trigonometric Identities

1.
cos 2α + sin 2α = 1
2.
sin (α + π 2 ) = cos α
3.
cos (α + π 2 ) = sin α
4.
sin 2α = 2 sin α cos α
5.
cos 2α = cos 2α sin 2α = 2 cos 2α 1 = 1 2 sin 2α
cos 2α = cos 2α sin 2α = 2 cos 2α 1 = 1 2 sin 2α
6.
sin(α+β) = sin α cos β+ cos α sin β
7.
sin(αβ) = sin α cos β cos α sin β
8.
cos(α+β) = cos α cos β sin α sin β
9.
cos(αβ) = cos α cos β+ sin α sin β
10.
tan α = sin α cos α

Example 1

Show that cos (π 4 + v) = 2 2 (cos v sin v)

To show this, you use the formula

cos(α + β) = cos α cos β sin α sin β

That gives you

cos (π 4 + v) = cos π 4 cos v sin π 4 sin v = 2 2 cos v 2 2 sin v = 2 2 (cos v sin v)

Example 2

Find the exact value of sin π 12

To solve this problem you write that sin(α) = sin(π α) and use the trigonometric identity

sin(α + β) = sin α cos β + cos α sin β

Then you get

sin ( π 12) = sin (π π 12) = sin (11π 12 ) = sin (π 6 + 3π 4 ) = sin (π 6 ) cos (3π 4 ) + cos (π 6 ) sin (3π 4 ) = 1 2 (2 2 ) + 3 2 2 2 = 6 2 4

sin ( π 12) = sin (π π 12) = sin (11π 12 ) = sin (π 6 + 3π 4 ) = sin (π 6 ) cos (3π 4 ) + cos (π 6 ) sin (3π 4 ) = 1 2 (2 2 ) + 3 2 2 2 = 6 2 4

Example 3

Given sin v = 3 2 , find cos v

You use the formula

cos 2α + sin 2α = 1

which gives you

cos 2v + sin 2v = 1 cos 2v = 1 sin 2v

That means that

cos v = ±1 sin 2 v = ±1 (3 2 ) 2 = ±1 3 4 = ±1 4 = ±1 2

Example 4

Given cos 2v + sin 2v = tan 2v, find sin v

To solve this you have to use several of the trigonometric identities above, and then calculate sin v:

2 cos 2v + sin 2v = tan 2v 1 sin 2v + sin 2v = sin 2v cos 2v 1 = sin 2v cos 2v| cos 2v cos 2v = sin 2v 1 sin 2v = sin 2v 1 = 2 sin 2v| ÷ 2 1 2 = sin 2v

cos 2v + sin 2v = tan 2v 1 sin 2v + sin 2v = sin 2v cos 2v 1 = sin 2v cos 2v | cos 2v cos 2v = sin 2v 1 sin 2v = sin 2v 1 = 2 sin 2v | ÷ 2 1 2 = sin 2v

That means

sin v = ±1 2 = ± 1 2 = ±2 2

Example 5

Show that cos(2α) = cos 2α sin 2α

When you’re solving problems like this, you want to take logical steps to get to what you want to show:

cos(2α) = cos(α + α) = cos α cos α sin α sin α = cos 2α sin 2α

Q.E.D

Example 6

Show that sin(2α) = 2 sin α cos α

When you’re solving problems like this, you want to take logical steps to get to what you want to show:

sin(2α) = sin(α + α) = sin α cos α + cos α sin α = 2 sin α sin α

Q.E.D

Globe AI
AI
How can I help you?
Beta